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     Introduction 
A classic result on the zeros of polynomials is the following theorem  due to Cauchy[5]: 
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The bound for the zeros given by the above theorem was sharpened for a lacunary polynomial  by Gulzar [4] , who 
proved the following result. 
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In this paper we find  annular bounds for the zeros of the  polynomial  given in Theorem B. In fact, we prove the 
following result: 
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    Taking  p=n-1 in Theorem 1, we get the following result: 

Corollary 1: Let n
n

n
n zazazazaazP +++++= −

−
1

1
2

210 ......)( , be a polynomial of degree n. Then all the 

zeros of  P(z) lie in RzR ≤≤1 ,where 

                   
2

0
232

0

2

1
4

01
2

1 2

4)()(

M

aRMaMaRaMaR
R

′

′+−′+−′−
= , 

                  ])1([
1

1 MRRMR
R

a
M nnn −−+

−
=′ + , 

                  ,1,......,2,1,0,max −== nj
a

a
M

n

j
 

              R=1+k, and k 1≠  is the positive root of the equation 

                         0)1(1 =++−+ MzMz nn  . 

      Taking  1=na  in Cor. 1, we get the following result, which was partly proved by  

Chadia Affani-Aji  et al [1] . 

Corollary 2: Let nn
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              R=1+k, and k 1≠  is the positive root of the equation 
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     Taking  p=1 in Theorem 1, we get the following result: 

Corollary 3: Let n
n zazaazP ++= 10)(  be a polynomial of degree n. Then all the zeros of  P(z) lie in 

RzR ≤≤1 ,where 
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              R=1+k, and k 1≠  is the positive root of the equation 

                         0)1(1 =++−+ MzMz nn  . 
Lemmas 
     For the proof of the above theorem , we need the following results: 

Lemma 1: Let f(z) be analytic for 1≤z , f(0)=a , where 1<a , 1)(,)0( ≤=′ zfbf  for 1=z  . Then, for 

1≤z , 
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The above lemma is due to Govil et al.[2]. 

Lemma 2: Let f(z) be analytic for Rz ≤ , f(0)=0 , bf =′ )0( and   Mzf ≤)( for 1=z .  Then, for Rz ≤ , 
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The above lemma is due to Govil and Jain [3, lemma 3], and follows by applying Lemma 1 to the function 
M

Rzf )(
, 

which clearly satisfies the conditions of  Lemma 1. 
 
Proof of Theorem 1 

In view of Theorem B, it suffices to show that P(z) does not vanish in 1Rz < . 
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Since g(z) is analytic for Rz ≤ , g(0)=0, 1)0( ag =′  and Mzg ′≤)( for Rz = , it follows by  lemma 2 that 
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This shows that P(z) does not vanish in 1Rz <  and the proof is complete.    
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